
Fibonacci numbers 
 

The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, 

known as Fibonacci: 

https://en.wikipedia.org/wiki/Fibonacci_number 

 

The Fibonacci numbers fn = f(n) are the numbers characterized by the fact that 

every number after the first two is the sum of the two preceding ones. They are defined 

with the next recurrent relation: 
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So f0 = 0, f1 = 1, fn = fn-1 + fn-2.  

The Fibonacci sequence has the form 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 

 

Example. Fill integer array fib with Fibonacci numbers (fib[i] = fi): 
 
#include <stdio.h> 

 

int i, n, fib[47]; 

 

int main(void) 

{ 

  scanf("%d",&n); 

 

  fib[0] = 0; fib[1] = 1; 

  for(i = 2; i <= n; i++) 

    fib[i] = fib[i-1] + fib[i-2]; 

 

  printf("%d\n",fib[n]); 

  return 0; 

} 
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The biggest Fibonacci number that fits into int type is  

f46 = 1836311903 

The biggest Fibonacci number that fits into long long type is  

f92 = 7540113804746346429 

If you want to find Fibonacci number fn for n > 92, use BigInteger type. 

 

Example. Find f(n) – the n-th Fibonacci number with recursion: 
 
#include <stdio.h> 

 

https://en.wikipedia.org/wiki/Fibonacci_number


int n; 

 

int fib(int n) 

{ 

  if (n == 0) return 0; 

  if (n == 1) return 1; 

  return fib(n-1) + fib(n - 2); 

} 

 

int main(void) 

{ 

  scanf("%d",&n); 

  printf("%d\n",fib(n)); 

  return 0; 

} 
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Example. Find f(n) – the n-th Fibonacci number with recursion + memorization: 
 
#include <stdio.h> 

#include <string.h> 

  

int n, fib[46]; 

  

int f(int n) 

{ 

  // base case 

  if (n == 0) return 0; 

  if (n == 1) return 1; 

 

  // if the value fib[n] is ALREADY found, just return it 

  if (fib[n] != -1) return fib[n];  

 

  // if the value fib[n] is not found, calculate and memorize it 

  return fib[n] = f(n-1) + f(n - 2); 

} 

  

int main(void) 

{ 

  scanf("%d",&n); 

 



  // fib[i] = -1 means that this value is not calculated yet 

  memset(fib,-1,sizeof(fib)); 

 

  printf("%d\n",f(n)); 

  return 0; 

} 
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Java code 
 
import java.util.*; 

 

public class Main 

{ 

  static int fib[] = new int[46];     

   

  static int f(int n) 

  { 

    if (n == 0) return 0; 

    if (n == 1) return 1; 

    if (fib[n] != -1) return fib[n]; 

    return fib[n] = f(n-1) + f(n - 2); 

  } 

   

  public static void main(String[] args) 

  { 

    Scanner con = new Scanner(System.in); 

    int n = con.nextInt(); 

    Arrays.fill(fib, -1); 

    System.out.println(f(n));      

    con.close(); 

  } 

} 

 

Prove the next properties for Fibonacci numbers: 

а) f0 + f1 + f2 + f3 + … +  fn = fn+2 – 1; 

► Base case n = 0: f0 = f2 – 1, which is true because 0 = 1 – 1. 

Induction step: f0 + f1 + f2 + f3 + … +  fn =  (f0 + f1 + f2 + f3 + … +  fn-1) + fn = 

fn+1 – 1 + fn = fn+2 – 1 

 



b) f1 + f3 + f5 + … +  f2n-1 = f2n; 

► Base case n = 1: f1 = f2, which is true because 1 = 1. 

Induction step: f1 + f3 + … +  f2n+1 =  (f1 + f3 + … +  f2n-1) + f2n+1 = 

f2n + f2n+1 = f2n+2 

 

c) f2 + f4 + f6 + … +  f2n = f2n+1 – 1; 

► Base case n = 1: f2 = f3 – 1, which is true because 1 = 2 – 1. 

Induction step: f2 + f4 + … +  f2n+2 =  (f2 + f4 + … +  f2n) + f2n+2 = 

f2n+1 – 1 + f2n+2 = f2n+3 – 1 

 

d) f0
2 + f1

2 + f2
2 + … +  fn

2 = fn * fn+1; 

► Base case n = 0: f0
2 = f0 * f1, which is true because 0 = 0 * 1. 

Induction step: f0
2 + f1

2 + f2
2 + … +  fn

2 =  (f0
2 + f1

2 + f2
2 + … +  fn-1

2) + fn
2 = 

fn-1 * fn + fn
2 = fn * (fn-1 + fn) = fn * fn+1 

 

E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n), 

given by the formula: 

F(0) = 1, F(1) = 1, F(n) = F(n – 1) + F(n – 2) 

Given value of n (n ≤ 45). Find the n-th Fibonacci number. 

► Implement a recursive function with memorization.  

 

NO two one’s in a row 

Find the number of sequences of length n, consisting only of zeros and ones, that 

do not have two one’s in a row. 

Let f(n) be the number of sequences consisting of 0 and 1 of length n that do not 

have two one’s in a row.  
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If the first number in the sequence is 0, then starting from the second place we can 

build f(n – 1) sequences. If the first number in the sequence is 1, then second number 

should be 0. 
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We have Fibonacci numbers with base cases f(1) = 2, f(2) = 3. 

 

https://www.e-olymp.com/en/problems/4730


E-OLYMP 263. Three ones Find the number of sequences of length n, consisting 

only of zeros and ones, that do not have three one’s in a row. 

► Let f(n) be the number of required sequences consisting of 0 and 1 of length n. 

If the first number in the sequence is 0, then starting from the second place we can build 

f(n – 1) sequences. If the first number in the sequence is 1, then second number can be 

any (0 or 1). If second number is 0, on the next n – 2 free places we can construct f(n – 

2) sequences. If second number is 1, the third number must be exactly 0, and starting 

from the forth place we can construct f(n – 3) sequences. 
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We have the recurrence: f(n) = f(n – 1) + f(n – 2) + f(n – 3). Now we must 

calculate the initial values: 

f(1) = 2, since there are two sequence of lengths 1: 0 and 1. 

f(2) = 4, since there are four sequence of lengths 2: 00, 01, 10 and 11. 

f(3) = 7, since there are seven sequence of lengths 3: 000, 001, 010, 011, 100, 101 

and 110. 

Do not forget to run all operations modulo 12345. 
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E-OLYMP 4469. Domino Find the number of ways to cover a rectangle 2 × 

n with domino of size 2 × 1. The coverings that turn themselves into symmetries are 

considered different.  

► Let f(n) be the number of ways to cover the 2 × n rectangle with 2 × 1 

dominoes. Obviously, that 

 f(1) = 1, one vertical domino; 

 f(2) = 2, two vertical or two horizontal dominoes. 

https://www.e-olymp.com/en/problems/263
https://www.e-olymp.com/en/problems/4469


f(1) = 1 f(2) = 2 f(3) = 3
 

Consider an algorithm for computing f(n). You can put one domino vertically and 

then cover a rectangle of length n – 1 in f(n – 1) ways, or put two dominoes horizontally 

and then cover a rectangle of length n – 2 in f(n – 2) ways. That is, f(n) = f(n – 1) + f(n – 

2).  

f(n)

n

= f(n-1)
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So f(n) is the Fibonacci number. 

f(4) =

 
Since n < 65536, long arithmetic or Java programming language should be used. 

 

E-OLYMP 8295. Fibonacci string generation Generate the n-th Fibonacci string 

that is defined with the next recurrent formula: 

 f(0) = "a"; 

 f(1) = "b"; 

 f(n) = f(n – 1) + f(n – 2), where "+" operation means concatenation 

For example, f(3) = f(2) + f(1) = (f(1) + f(0)) + f(1) = "b" + "a" + "b" = "bab". 

► Implement a recursive function that generates the n-th Fibonacci string. 

 
string f(int n) 

{ 

  if (n == 0) return "a"; 

  if (n == 1) return "b"; 

  return f(n-1) + f(n-2); 

} 

 

Read input value of n and print the n-th Fibonacci string. 
 

cin >> n; 

cout << f(n) << endl; 

 

https://www.e-olymp.com/en/problems/8295


E-OLYMP 5091. Explosive containers You have two types of boxes: with trotyl 

(TNT) or without. You must build with boxes a tower of height n. In how many ways 

can you do it if it is forbidden to put TNT box on TNT box because of explosion. 

► Let's code the empty box with 0 and the box with TNT with 1. In the problem 

we must find the number of strings of length n consisting of 0 and 1, in which two ones 

are not adjacent. The answer to the problem will be the Fibonacci number f(n): 
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Consider all possible towers of height n = 1, n = 2, n = 3. Each of them 

corresponds a sequence of 0 and 1. There are: 

 two towers of height 1; 

 three towers of height 2; 

 five towers of height 3; 
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100
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TNT TNT

 
 

E-OLYMP 5103. Koza Nostra n teachers sit in a circle. The dealer should give to 

some of them one card with Ace (any amount of Aces is possible, even can be 0) – these 

teachers are the mafia. However, no two mafiosi can sit next to each other. In how many 

ways can deal the cards the dealer? 

► Let g(n) be the number of ways to deal the cards to n teachers arranged in a row 

(the first teachers is not located next to the last). Then the problem is equivalent to 

finding the number of sequences of length n consisting of 0 and 1, where no two ones 

stand side by side. Solution to this problem is the Fibonacci number given by 

recurrence: 
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Let f(n) be the number of ways to deal cards to n teachers arranged in a circle. 

f(n) = 0 g(n - 1) + 1 g(n - 3)0 0
 

If the first teacher was not given an ace, then the next n – 1 teachers can be given 

aces in g(n – 1) ways. If the first teacher was given an ace, then the second and last 

teachers should not be given aces. For the remaining n – 3 teachers the aces can be 

distributed in g(n – 3) ways. We have the relation: 

f(n) = g(n – 1) + g(n – 3), if n ≥ 3 

For n = 3 we need the value g(0), that can be calculated from the equality g(0) + 

g(1) = g(2), whence g(0) = g(2) – g(1) = 3 – 2 = 1. Hence f(3) = g(2) + g(0) = 3 + 1 = 4. 

https://www.e-olymp.com/en/problems/5091
https://www.e-olymp.com/en/problems/5103
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Here is the base cases: 

 f(1) = 2 

 f(2) = 3 
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E-OLYMP 5092. Honeycomb The bee can go in honeycomb as shown in the 

figure – with moves 1 and 2 from upper row and with move 3 from the lower. 

 
Find the number of ways to get from the first cell of the top row to the last cell of 

the same row. 

► Enumerate the honeycomb in the next way: 

1

2 4 6

3 5 7

...

...

2n-2

2n-1

 
Let f(k) be the number of ways to get from the first honeycomb into the k-th one. If 

upper row contains n honeycomb, the number of rightmost honeycomb of upper row 

has number 2n – 1. So the answer to the problem will be f(2n – 1). 

kk - 21

k - 3

k + 1k - 11

k

 
If k-th honeycomb is located in the upper row, the bee can come into it either from 

(k – 2)-th honeycomb, or from (k – 3)-th. So f(k) = f(k – 2) + f(k – 3) for odd k. 

https://www.e-olymp.com/en/problems/5092


If k-th honeycomb is located in the lower row, the bee can come into it only from 

(k – 1)-th honeycomb. So f(k) = f(k – 1) for even k. 

Calculate the base cases separately: f(1) = 1, f(2) = 1, f(3) = 1. 

 

E-OLYMP 1343. Bad substring Find the number of strings of length n (0 ≤ n ≤ 

45) consisting of only the characters 'a', 'b' and 'c', not containing the substring "ab". 

► Let f(n) be the number of required strings of length n. If n = 1 we have 3 such 

strings, when n = 2 we have 8 strings: 

a b c

n = 1

aa ba ca

n = 2

ac bb

bc

cb

cc
 

Consider all possible ways to build the required strings. In the first position we can 

put one of three letters: ‘a’, ‘b’ or ‘c’. If we first put ‘b’ or ‘c’, then in the next n – 1 

positions we can put any of f(n – 1) words. If we first put ‘a’, then we need to consider 

the cases of placing the letters in the second position. If we place in the second position 

‘c’, then in the next n – 2 positions we can put any of f(n – 2) words. If we put in the 

second position ‘a’, then similary we need to consider the placement of letters in the 

third position. 

n
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n
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n
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n

...a aa aa

 
We have a relation: 

f(n) = 2f(n – 1) + f(n – 2) + f(n – 3) + … + f(1) + f(0) + 1 

 

How to simplify this recurrence? Let’s rewrite it from f(n – 1):  

f(n – 1) = 2f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1, 

whence 

f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1 = f(n – 1) –  f(n – 2) 

Substitute this sum in the first relation: 

https://www.e-olymp.com/en/problems/1343


f(n) = 2f(n – 1) + f(n – 1) –  f(n – 2) = 3f(n – 1) –  f(n – 2) 

So we get the recurrence relation: 
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E-OLYMP 5973. Out of the line! n soldiers stay in one line. In how many ways 

can we choose some of them (at least one) so that among them there will not be soldiers 

standing in a line beside? 

► Let f(n) be the number of ways for soldiers to out of the line. Its obvious that 

f(1) = 1 and f(2) = 2. 
 

+

n

n-1 n-2 ... 1=n n-1 n-2 ... 1

 
 

+

n

f(n-2) f(n-1)nn-1

 
Let the soldiers in the row are numbered in decreasing order from n to 1. Then its 

possible to get out of the line with one of the next ways: 

 n-th goes out, all others stay in a line; 

 n-th goes out, then (n – 1)-st must stay in a line. Then recursively consider 

the solution for (n – 2) soldiers; 

 n-th stay in a line. Then recursively solve the problem for (n – 1) soldiers; 

So we get the recurrence relation: 
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E-OLYMP 6583. Counting ones How many ones in binary representation of 

numbers from 0 to n? 

► Let f(n) be the number of ones in binary representation of all integers from 0 to 

n. Then the answer for the interval [a; b] is the value f(b) – f(a – 1). 

https://www.e-olymp.com/en/problems/5973
https://www.e-olymp.com/en/problems/6583
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If n is odd, then f(n) = 2 * f(n / 2) +  2/n .  

If n is even, let f(n) = f(n – 1) + s(n), where s(n) is the number of ones in binary 

representation of n. 

The base case is f(0) = 0. 

 


