
Fibonacci numbers

The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa,

known as Fibonacci:

https://en.wikipedia.org/wiki/Fibonacci_number

The Fibonacci numbers fn = f(n) are the numbers characterized by the fact that

every number after the first two is the sum of the two preceding ones. They are defined

with the next recurrent relation:

















)2()1(

1 ,1

0 ,0

)(

nfnf

nif

nif

nf

So f0 = 0, f1 = 1, fn = fn-1 + fn-2.

The Fibonacci sequence has the form

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Example. Fill integer array fib with Fibonacci numbers (fib[i] = fi):

#include <stdio.h>

int i, n, fib[47];

int main(void)

{

 scanf("%d",&n);

 fib[0] = 0; fib[1] = 1;

 for(i = 2; i <= n; i++)

 fib[i] = fib[i-1] + fib[i-2];

 printf("%d\n",fib[n]);

 return 0;

}

0

0

1

1

1

2

2

3

3

4

5

5

fib[i]

i

8

6

13

7

21

8

34

9

55

10

...

...

The biggest Fibonacci number that fits into int type is

f46 = 1836311903

The biggest Fibonacci number that fits into long long type is

f92 = 7540113804746346429

If you want to find Fibonacci number fn for n > 92, use BigInteger type.

Example. Find f(n) – the n-th Fibonacci number with recursion:

#include <stdio.h>

https://en.wikipedia.org/wiki/Fibonacci_number

int n;

int fib(int n)

{

 if (n == 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n - 2);

}

int main(void)

{

 scanf("%d",&n);

 printf("%d\n",fib(n));

 return 0;

}

f(4)

f(3) + f(2)

f(2) + f(1) f(1) + f(0)

f(1) + f(0)

f(2) + f(1)

f(1) + f(0)

f(3)+

f(5)

Example. Find f(n) – the n-th Fibonacci number with recursion + memorization:

#include <stdio.h>

#include <string.h>

int n, fib[46];

int f(int n)

{

 // base case

 if (n == 0) return 0;

 if (n == 1) return 1;

 // if the value fib[n] is ALREADY found, just return it

 if (fib[n] != -1) return fib[n];

 // if the value fib[n] is not found, calculate and memorize it

 return fib[n] = f(n-1) + f(n - 2);

}

int main(void)

{

 scanf("%d",&n);

 // fib[i] = -1 means that this value is not calculated yet

 memset(fib,-1,sizeof(fib));

 printf("%d\n",f(n));

 return 0;

}

f(4)

f(3) + f(2)

f(2) + f(1)

f(1) + f(0)

f(3)+

f(5)

mem

mem

Java code

import java.util.*;

public class Main

{

 static int fib[] = new int[46];

 static int f(int n)

 {

 if (n == 0) return 0;

 if (n == 1) return 1;

 if (fib[n] != -1) return fib[n];

 return fib[n] = f(n-1) + f(n - 2);

 }

 public static void main(String[] args)

 {

 Scanner con = new Scanner(System.in);

 int n = con.nextInt();

 Arrays.fill(fib, -1);

 System.out.println(f(n));

 con.close();

 }

}

Prove the next properties for Fibonacci numbers:

а) f0 + f1 + f2 + f3 + … + fn = fn+2 – 1;

► Base case n = 0: f0 = f2 – 1, which is true because 0 = 1 – 1.

Induction step: f0 + f1 + f2 + f3 + … + fn = (f0 + f1 + f2 + f3 + … + fn-1) + fn =

fn+1 – 1 + fn = fn+2 – 1

b) f1 + f3 + f5 + … + f2n-1 = f2n;

► Base case n = 1: f1 = f2, which is true because 1 = 1.

Induction step: f1 + f3 + … + f2n+1 = (f1 + f3 + … + f2n-1) + f2n+1 =

f2n + f2n+1 = f2n+2

c) f2 + f4 + f6 + … + f2n = f2n+1 – 1;

► Base case n = 1: f2 = f3 – 1, which is true because 1 = 2 – 1.

Induction step: f2 + f4 + … + f2n+2 = (f2 + f4 + … + f2n) + f2n+2 =

f2n+1 – 1 + f2n+2 = f2n+3 – 1

d) f0
2 + f1

2 + f2
2 + … + fn

2 = fn * fn+1;

► Base case n = 0: f0
2 = f0 * f1, which is true because 0 = 0 * 1.

Induction step: f0
2 + f1

2 + f2
2 + … + fn

2 = (f0
2 + f1

2 + f2
2 + … + fn-1

2) + fn
2 =

fn-1 * fn + fn
2 = fn * (fn-1 + fn) = fn * fn+1

E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n),

given by the formula:

F(0) = 1, F(1) = 1, F(n) = F(n – 1) + F(n – 2)

Given value of n (n ≤ 45). Find the n-th Fibonacci number.

► Implement a recursive function with memorization.

NO two one’s in a row

Find the number of sequences of length n, consisting only of zeros and ones, that

do not have two one’s in a row.

Let f(n) be the number of sequences consisting of 0 and 1 of length n that do not

have two one’s in a row.

f(1) = 2

0

1

0

0

1

0

1

0

f(2) = 3

0

1

1

1

0

0

f(3) = 5

0

0

0

0

0

0

1

0

1

If the first number in the sequence is 0, then starting from the second place we can

build f(n – 1) sequences. If the first number in the sequence is 1, then second number

should be 0.

f(n)

n

= 0 f(n-1)

n-1

+ f(n-2)

n-2

1 0

We have Fibonacci numbers with base cases f(1) = 2, f(2) = 3.

https://www.e-olymp.com/en/problems/4730

E-OLYMP 263. Three ones Find the number of sequences of length n, consisting

only of zeros and ones, that do not have three one’s in a row.

► Let f(n) be the number of required sequences consisting of 0 and 1 of length n.

If the first number in the sequence is 0, then starting from the second place we can build

f(n – 1) sequences. If the first number in the sequence is 1, then second number can be

any (0 or 1). If second number is 0, on the next n – 2 free places we can construct f(n –

2) sequences. If second number is 1, the third number must be exactly 0, and starting

from the forth place we can construct f(n – 3) sequences.

f(n)

n

= 0 f(n-1)

n-1

+ f(n-2)

n-2

1 0

+ f(n-3)

n-3

1 01

We have the recurrence: f(n) = f(n – 1) + f(n – 2) + f(n – 3). Now we must

calculate the initial values:

f(1) = 2, since there are two sequence of lengths 1: 0 and 1.

f(2) = 4, since there are four sequence of lengths 2: 00, 01, 10 and 11.

f(3) = 7, since there are seven sequence of lengths 3: 000, 001, 010, 011, 100, 101

and 110.

Do not forget to run all operations modulo 12345.

f(1) = 2

0

1
f(2) = 4

01

10

00

11

f(3) = 7

01

10

00

11

0

1

+

0
0

1

+

1 1 0

=
001

010

000

011

=

100

101

= 110

E-OLYMP 4469. Domino Find the number of ways to cover a rectangle 2 ×

n with domino of size 2 × 1. The coverings that turn themselves into symmetries are

considered different.

► Let f(n) be the number of ways to cover the 2 × n rectangle with 2 × 1

dominoes. Obviously, that

 f(1) = 1, one vertical domino;

 f(2) = 2, two vertical or two horizontal dominoes.

https://www.e-olymp.com/en/problems/263
https://www.e-olymp.com/en/problems/4469

f(1) = 1 f(2) = 2 f(3) = 3

Consider an algorithm for computing f(n). You can put one domino vertically and

then cover a rectangle of length n – 1 in f(n – 1) ways, or put two dominoes horizontally

and then cover a rectangle of length n – 2 in f(n – 2) ways. That is, f(n) = f(n – 1) + f(n –

2).

f(n)

n

= f(n-1)

n-1

+ f(n-2)

n-2

So f(n) is the Fibonacci number.

f(4) =

Since n < 65536, long arithmetic or Java programming language should be used.

E-OLYMP 8295. Fibonacci string generation Generate the n-th Fibonacci string

that is defined with the next recurrent formula:

 f(0) = "a";

 f(1) = "b";

 f(n) = f(n – 1) + f(n – 2), where "+" operation means concatenation

For example, f(3) = f(2) + f(1) = (f(1) + f(0)) + f(1) = "b" + "a" + "b" = "bab".

► Implement a recursive function that generates the n-th Fibonacci string.

string f(int n)

{

 if (n == 0) return "a";

 if (n == 1) return "b";

 return f(n-1) + f(n-2);

}

Read input value of n and print the n-th Fibonacci string.

cin >> n;

cout << f(n) << endl;

https://www.e-olymp.com/en/problems/8295

E-OLYMP 5091. Explosive containers You have two types of boxes: with trotyl

(TNT) or without. You must build with boxes a tower of height n. In how many ways

can you do it if it is forbidden to put TNT box on TNT box because of explosion.

► Let's code the empty box with 0 and the box with TNT with 1. In the problem

we must find the number of strings of length n consisting of 0 and 1, in which two ones

are not adjacent. The answer to the problem will be the Fibonacci number f(n):

















)2()1(

2 ,3

1 ,2

)(

nfnf

nif

nif

nf

Consider all possible towers of height n = 1, n = 2, n = 3. Each of them

corresponds a sequence of 0 and 1. There are:

 two towers of height 1;

 three towers of height 2;

 five towers of height 3;

TNT

0 1

TNT

00 01 10

TNT

TNT

000 001 010

TNT

100

TNT

101

TNT TNT

E-OLYMP 5103. Koza Nostra n teachers sit in a circle. The dealer should give to

some of them one card with Ace (any amount of Aces is possible, even can be 0) – these

teachers are the mafia. However, no two mafiosi can sit next to each other. In how many

ways can deal the cards the dealer?

► Let g(n) be the number of ways to deal the cards to n teachers arranged in a row

(the first teachers is not located next to the last). Then the problem is equivalent to

finding the number of sequences of length n consisting of 0 and 1, where no two ones

stand side by side. Solution to this problem is the Fibonacci number given by

recurrence:

















)2()1(

2 ,3

1 ,2

)(

ngng

nif

nif

ng

Let f(n) be the number of ways to deal cards to n teachers arranged in a circle.

f(n) = 0 g(n - 1) + 1 g(n - 3)0 0

If the first teacher was not given an ace, then the next n – 1 teachers can be given

aces in g(n – 1) ways. If the first teacher was given an ace, then the second and last

teachers should not be given aces. For the remaining n – 3 teachers the aces can be

distributed in g(n – 3) ways. We have the relation:

f(n) = g(n – 1) + g(n – 3), if n ≥ 3

For n = 3 we need the value g(0), that can be calculated from the equality g(0) +

g(1) = g(2), whence g(0) = g(2) – g(1) = 3 – 2 = 1. Hence f(3) = g(2) + g(0) = 3 + 1 = 4.

https://www.e-olymp.com/en/problems/5091
https://www.e-olymp.com/en/problems/5103

0 0 0 0 0 1 0 1 0

1 0 0

Here is the base cases:

 f(1) = 2

 f(2) = 3

0

1

f(1) = 2

0

1

f(2) = 3

1

0

0 0

E-OLYMP 5092. Honeycomb The bee can go in honeycomb as shown in the

figure – with moves 1 and 2 from upper row and with move 3 from the lower.

Find the number of ways to get from the first cell of the top row to the last cell of

the same row.

► Enumerate the honeycomb in the next way:

1

2 4 6

3 5 7

...

...

2n-2

2n-1

Let f(k) be the number of ways to get from the first honeycomb into the k-th one. If

upper row contains n honeycomb, the number of rightmost honeycomb of upper row

has number 2n – 1. So the answer to the problem will be f(2n – 1).

kk - 21

k - 3

k + 1k - 11

k

If k-th honeycomb is located in the upper row, the bee can come into it either from

(k – 2)-th honeycomb, or from (k – 3)-th. So f(k) = f(k – 2) + f(k – 3) for odd k.

https://www.e-olymp.com/en/problems/5092

If k-th honeycomb is located in the lower row, the bee can come into it only from

(k – 1)-th honeycomb. So f(k) = f(k – 1) for even k.

Calculate the base cases separately: f(1) = 1, f(2) = 1, f(3) = 1.

E-OLYMP 1343. Bad substring Find the number of strings of length n (0 ≤ n ≤

45) consisting of only the characters 'a', 'b' and 'c', not containing the substring "ab".

► Let f(n) be the number of required strings of length n. If n = 1 we have 3 such

strings, when n = 2 we have 8 strings:

a b c

n = 1

aa ba ca

n = 2

ac bb

bc

cb

cc

Consider all possible ways to build the required strings. In the first position we can

put one of three letters: ‘a’, ‘b’ or ‘c’. If we first put ‘b’ or ‘c’, then in the next n – 1

positions we can put any of f(n – 1) words. If we first put ‘a’, then we need to consider

the cases of placing the letters in the second position. If we place in the second position

‘c’, then in the next n – 2 positions we can put any of f(n – 2) words. If we put in the

second position ‘a’, then similary we need to consider the placement of letters in the

third position.

n

f(n) =

n

+

f(n-1)b

f(n-1)c

n

+f(n-2)a c

n

+f(n-3)a ca

n

+ . . .f(n-4)a caa

n

+f(1)a a... ca

n

+...a aa ca

n

...a aa aa

We have a relation:

f(n) = 2f(n – 1) + f(n – 2) + f(n – 3) + … + f(1) + f(0) + 1

How to simplify this recurrence? Let’s rewrite it from f(n – 1):

f(n – 1) = 2f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1,

whence

f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1 = f(n – 1) – f(n – 2)

Substitute this sum in the first relation:

https://www.e-olymp.com/en/problems/1343

f(n) = 2f(n – 1) + f(n – 1) – f(n – 2) = 3f(n – 1) – f(n – 2)

So we get the recurrence relation:









3)1(,1)0(

)2()1(3)(

ff

nfnfnf

E-OLYMP 5973. Out of the line! n soldiers stay in one line. In how many ways

can we choose some of them (at least one) so that among them there will not be soldiers

standing in a line beside?

► Let f(n) be the number of ways for soldiers to out of the line. Its obvious that

f(1) = 1 and f(2) = 2.

+

n

n-1 n-2 ... 1=n n-1 n-2 ... 1

+

n

f(n-2) f(n-1)nn-1

Let the soldiers in the row are numbered in decreasing order from n to 1. Then its

possible to get out of the line with one of the next ways:

 n-th goes out, all others stay in a line;

 n-th goes out, then (n – 1)-st must stay in a line. Then recursively consider

the solution for (n – 2) soldiers;

 n-th stay in a line. Then recursively solve the problem for (n – 1) soldiers;

So we get the recurrence relation:









2)2(,1)1(

1)2()1()(

ff

nfnfnf

E-OLYMP 6583. Counting ones How many ones in binary representation of

numbers from 0 to n?

► Let f(n) be the number of ones in binary representation of all integers from 0 to

n. Then the answer for the interval [a; b] is the value f(b) – f(a – 1).

https://www.e-olymp.com/en/problems/5973
https://www.e-olymp.com/en/problems/6583

000

001

010

011

101

100

f(5) = 7

00 0

00 1

01 0

01 1

10 0

10 1

=

00

01

10

f(2)

+

00

01

10

+ f(2)

+

0

1

0

1

0

1

+ (5+1)/2f(5) =

2 + 2 + 3=

If n is odd, then f(n) = 2 * f(n / 2) +  2/n .

If n is even, let f(n) = f(n – 1) + s(n), where s(n) is the number of ones in binary

representation of n.

The base case is f(0) = 0.

